State-Dependent Spike-Timing Relationships between Hippocampal and Prefrontal Circuits during Sleep

نویسندگان

  • Casimir M. Wierzynski
  • Evgueniy V. Lubenov
  • Ming Gu
  • Athanassios G. Siapas
چکیده

Cortico-hippocampal interactions during sleep are believed to reorganize neural circuits in support of memory consolidation. However, spike-timing relationships across cortico-hippocampal networks-key determinants of synaptic changes-are poorly understood. Here we show that cells in prefrontal cortex fire consistently within 100 ms after hippocampal cells in naturally sleeping animals. This provides evidence at the single cell-pair level for highly consistent directional interactions between these areas within the window of plasticity. Moreover, these interactions are state dependent: they are driven by hippocampal sharp-wave/ripple (SWR) bursts in slow-wave sleep (SWS) and are sharply reduced during REM sleep. Finally, prefrontal responses are nonlinear: as the strength of hippocampal bursts rises, short-latency prefrontal responses are augmented by increased spindle band activity and a secondary peak approximately 100 ms later. These findings suggest that SWR events are atomic units of hippocampal-prefrontal communication during SWS and that the coupling between these areas is highly attenuated during REM sleep.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decoupling of Sleep-Dependent Cortical and Hippocampal Interactions in a Neurodevelopmental Model of Schizophrenia

Rhythmic neural network activity patterns are defining features of sleep, but interdependencies between limbic and cortical oscillations at different frequencies and their functional roles have not been fully resolved. This is particularly important given evidence linking abnormal sleep architecture and memory consolidation in psychiatric diseases. Using EEG, local field potential (LFP), and un...

متن کامل

Phase-Locking of Neurons in the Hippocampus and the Medial Prefrontal Cortex of the Rat to the Hippocampal Theta Rhythm

The interactions between cortical and hippocampal circuits are critical for memory formation, yet their basic organization at the neuronal network level is not well understood. Here we investigate the timing relationships between neuronal activity in the medial prefrontal cortex of freely behaving rats and the hippocampal theta rhythm. We demonstrate that a significant portion of prefrontal neu...

متن کامل

Coherent Theta Oscillations and Reorganization of Spike Timing in the Hippocampal- Prefrontal Network upon Learning

To study the interplay between hippocampus and medial prefrontal cortex (Pfc) and its importance for learning and memory consolidation, we measured the coherence in theta oscillations between these two structures in rats learning new rules on a Y maze. Coherence peaked at the choice point, most strongly after task rule acquisition. Simultaneously, Pfc pyramidal neurons reorganized their phase, ...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2009